Genes and pathways affected by CAG-repeat RNA-based toxicity in Drosophila
نویسندگان
چکیده
Spinocerebellar ataxia type 3 is one of the polyglutamine (polyQ) diseases, which are caused by a CAG-repeat expansion within the coding region of the associated genes. The CAG repeat specifies glutamine, and the expanded polyQ domain mutation confers dominant toxicity on the protein. Traditionally, studies have focused on protein toxicity in polyQ disease mechanisms. Recent findings, however, demonstrate that the CAG-repeat RNA, which encodes the toxic polyQ protein, also contributes to the disease in Drosophila. To provide insights into the nature of the RNA toxicity, we extracted brain-enriched RNA from flies expressing a toxic CAG-repeat mRNA (CAG100) and a non-toxic interrupted CAA/G mRNA repeat (CAA/G105) for microarray analysis. This approach identified 160 genes that are differentially expressed specifically in CAG100 flies. Functional annotation clustering analysis revealed several broad ontologies enriched in the CAG100 gene list, including iron ion binding and nucleotide binding. Intriguingly, transcripts for the Hsp70 genes, a powerful suppressor of polyQ and other human neurodegenerative diseases, were also upregulated. We therefore tested and showed that upregulation of heat shock protein 70 mitigates CAG-repeat RNA toxicity. We then assessed whether other modifiers of the pathogenic, expanded Ataxin-3 polyQ protein could also modify the CAG-repeat RNA toxicity. This approach identified the co-chaperone Tpr2, the transcriptional regulator Dpld, and the RNA-binding protein Orb2 as modifiers of both polyQ protein toxicity and CAG-repeat RNA-based toxicity. These findings suggest an overlap in the mechanisms of RNA and protein-based toxicity, providing insights into the pathogenicity of the RNA in polyQ disease.
منابع مشابه
Triplet Repeat–Derived siRNAs Enhance RNA–Mediated Toxicity in a Drosophila Model for Myotonic Dystrophy
More than 20 human neurological and neurodegenerative diseases are caused by simple DNA repeat expansions; among these, non-coding CTG repeat expansions are the basis of myotonic dystrophy (DM1). Recent work, however, has also revealed that many human genes have anti-sense transcripts, raising the possibility that human trinucleotide expansion diseases may be comprised of pathogenic activities ...
متن کاملRNA pathogenesis via Toll-like receptor-activated inflammation in expanded repeat neurodegenerative diseases
Previously, we hypothesized that an RNA-based pathogenic pathway has a causal role in the dominantly inherited unstable expanded repeat neurodegenerative diseases. In support of this hypothesis we, and others, have characterized rCAG.rCUG 100 repeat double-strand RNA (dsRNA) as a previously unidentified agent capable of causing pathogenesis in a Drosophila model of neurodegenerative disease. Di...
متن کاملGenome-Wide Screen for Modifiers of Ataxin-3 Neurodegeneration in Drosophila
Spinocerebellar ataxia type-3 (SCA3) is among the most common dominantly inherited ataxias, and is one of nine devastating human neurodegenerative diseases caused by the expansion of a CAG repeat encoding glutamine within the gene. The polyglutamine domain confers toxicity on the protein Ataxin-3 leading to neuronal dysfunction and loss. Although modifiers of polyglutamine toxicity have been id...
متن کاملP-91: Androgen Associated Gene Polymorphism(s) in Women with Polycystic Ovary Syndrome from South Indian Population
Background: Polycystic ovary syndrome (PCOS) is a heterogeneous endocrine disorder affecting 4-12% of reproductive women worldwide; characterized by chronic anovulation, clinical and/or biochemical hyperandrogenism, and polycystic ovaries on ultrasound scan. Ovarian androgen overproduction is the key pathophysiologic feature of PCOS. A number of genes encoding major enzymes of the androgen meta...
متن کاملReduction of Huntington’s Disease RNA Foci by CAG Repeat-Targeting Reagents
In several human polyglutamine diseases caused by expansions of CAG repeats in the coding sequence of single genes, mutant transcripts are detained in nuclear RNA foci. In polyglutamine disorders, unlike other repeat-associated diseases, both RNA and proteins exert pathogenic effects; therefore, decreases of both RNA and protein toxicity need to be addressed in proposed treatments. A variety of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 20 شماره
صفحات -
تاریخ انتشار 2011